Inverse lagrange interpolation formula theory, algorithm and flowchart with a lot of example






Inverse Lagrange’s Interpolation Formula

Theory :

  .



Example :


1. Use Lagrange’s inverse interpolation formula to obtain the value of t, when A=85 from the following table-------------

T
2
5
8
14
A
94.8
87.9
81.3
68.7
           
       Ans : 6.30383001716033

2. Lagrange’s formula inversely to obtain the value of ɸ, when F(ɸ)=0.3887, from the following table----------

ɸ
210
230
250
F(ɸ)
0.3706
0.4068
0.4433

Ans : 220.020463153135





3. Find the value of x corresponding to y=1000, by using inverse interpolation, from the given data.
X
3
5
7
9
Y
6
24
58
108

                   Ans : 6139.30475615886

4. Find the age-corresponding to the annuity value 13.6 given 

Age(x)
30
35
40
45
5 0
Annuity value(y)
15.9
14.9
14.1
13.3
12.5

Ans : 43.1418504901961
           
5. The following table gives the value of the probability integral equal to 0.5

X
0.46
0.47
0.48
0.49
F(x)
0.4846555
0.4937452
0.5027498
0.51166833

Ans : 0.476936

6. Apply Lagrange’s formula inversely to obtain the root of the equation f(x)=0,given 
f(30)=-30, f(34)=-13, f(38)=3, f(42)=18.
           Ans : 37.230373
           
7. Apply Lagrange’s inverse interpolation, from the data given below, find the value of x , when y=13.5.    
X
93.0
96.2
100.0
104.2
108.7
Y
11.38
12.80
14.70
17.07
19.91

                      Ans : 97.555746


 Algorithm for Inverse Lagrange interpolation formula--------

 












 Flow chart for Inverse Lagrange Interpolation formula :








No comments:

Post a Comment